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Abstract

We study infinite composite beams with periodic simple supports and analyze their vibration attenuation
characteristics. In the literature single spans of such beams have been studied for determining their loss
factors. Such loss factor information is insufficient for determining attenuation in the periodic or multi-
span case. Here, we directly derive propagation constants as a function of frequency. Two distinct cases are
investigated in detail. The first is a three-layered periodic beam with a continuous central visco-elastic layer.
The second is a periodic beam with visco-elastic inserts of finite extent. The former is analytically tractable
and yields insight, while the latter has better structural properties for practical applications. The continuous
layer case is studied using several different beam theories. The case with inserts is studied for several
different configurations using FEM. Dependence of attenuation characteristics on size, location, and
number of inserts is presented. This study provides insights that will be useful for designing visco-elastic
inserts for vibration attenuation in periodic structures.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Vibrations from sources such as engines are transmitted to distant parts of the system by beam
type supporting structures in the form of various waves (flexural, torsional, and longitudinal).
These waves interfere with the functioning of other sub-systems and even radiate as sound. A
typical example is a ship structure, where the engine is mounted on a foundation which is in the
form of a periodic grillage of beams (or the hull which is a periodic construction of beams and
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plates). This grillage transmits engine vibrations to the sonar compartment, to the residential
cabins, and finally to the hull and to the outside as sound. The excitation is both periodic and
random, covering a broad range of frequencies. Discontinuities in various forms such as masses,
cross beam structures and changes in material do cause reflections and reduce the transmitted
energy, yet the degree of attenuation is insufficient, inadequate over a broad range of frequencies
and the regions between these discontinuities exhibit local resonances. The inadequacy comes
because the attenuation occurs only due to the reflections at the junctions or discontinuities and
not throughout the vibration propagation path.
These foundation structures are typically modelled as periodic structures (periodic implies

infinite structures with a certain periodicity). Such systems have been studied for nearly 300 years
as pointed out by Brillouin in his classic work [1]. Physicists and electrical engineers have
developed the studies over the years in relation to crystals, optics, electrical transmission lines, etc.
It is only in recent times that wave motion in engineering periodic structures (consisting of beams,
plates, etc.) has been investigated. These periodic structures lend themselves to analysis using
wave propagation methods.
A significant amount of research material exists in the area of periodic structures. One such

typical structure is the periodically supported beam [2]. In this structure, typically, a damping
layer is added to attenuate vibrations. Such a layer damps vibrations throughout the wave
propagation path and not just at junctions. However, these studies have mainly investigated loss
factors. Studies on layered periodic beams for understanding wave propagation have not been
done in much detail. Since the area has been researched for a long time, it is only proper that we
present a brief yet sufficient review of the relevant literature.
Sen Gupta [3] used a graphical network to determine the natural frequencies of flexural

vibration of continuous beams having any number of spans of uniform length. Narrow
attenuation zones and amplification zones in finite and semi-infinite beams were analyzed. Cremer
and Leilich [4] studied flexural motion in periodic beam structures, and showed that waves
propagate in some frequency bands but not in others. Ellington and McCallion [5] studied the free
vibration of grillages on the assumption that the mass of the beams is concentrated at the nodes
and that the beams do not resist torsion. The effect of the approximation inherent in the lumping
of masses was also investigated. Thein Wah’s [6] investigation revealed that at least for the case of
the simple support on all edges of the grillage, the lowest natural frequencies were closely
approximated by the lumped-mass approximation. Thein Wah [7] also investigated the free
oscillations of a uniform grillage using finite difference calculus technique. The theory is
approximate in that the mass of the beams is concentrated at the nodes. Solutions for a simply
supported grillage were developed.
Heckl [8] studied the vibration of a grillage using Euler Beam Theory and wave approach. He

demonstrated the same property that waves can propagate in some frequency bands but not in
others. In general it was found that out of the several propagation constants, that with the least
attenuation carries all the waves to the far field. Yong and Lin in Refs. [9,10] developed time
domain methods for planar and three dimensional (3-D) truss type structures. In Ref. [10] a 3-D
truss with a complex looped configuration was investigated to form the basic unit which was
repeated to form the full structure. Once the basic unit is formed this essentially is a 1-D
formulation. Similar work was presented by Flotow [11] for a complex structural network of
beams and rods. System impulse responses were investigated.
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Roy and Plunkett [12] investigated wave attenuation in infinite periodic beams with cross ribs.
Both analysis and experiments using a limited number of ribs were done. The results were
presented in terms of insertion loss. Kerwin [13], and Saito and Sato [14] investigated damping of
flexural waves in beams using a constrained layer. Kerwin presented analytical and experimental
results for loss factors. Saito and Sato presented a 2-D elasticity view point followed by a study of
the dispersion relation for the three-layered beam as a function of frequency. In the paper [15], the
sixth order differential equation of motion for a three-layered sandwich beam with a visco-elastic
core was derived in terms of the transverse displacement ðZÞ:Mathematical expressions in terms of
Z were found for a variety of boundary conditions. The solution of the differential equation was
shown to yield a special class of complex, forced modes of vibration which were completely
uncoupled.
Mead and his co-workers [16,17] included the effects of damping in the wave propagation

theory for periodic beams, and later discussed the nature of the propagating waves and their
possible interaction with acoustic waves. In the paper [16], a three-layered encastre sandwich
beam was investigated and its characteristic equation for the resonant frequency, loss factor and
modal roots were determined. A method for general boundary conditions was presented. In this
context, Reddy and Mallik [18,19] studied the natural frequencies and modal loss factors of two
and three-layered periodic rings, respectively.
This was followed by a study of the harmonic and random responses of periodic beams on

elastic supports and subjected to loading [20,21]. In the paper [20], the relationship between the
bounding frequencies of the propagation zones of mono-coupled periodic systems and the natural
frequencies of the individual elements of which the system is composed was studied. The concept
of characteristic receptance was derived. In Ref. [21] a general theory in 1-D systems with multiple
coupling between adjacent elements was presented. The nature and number of different wave
propagation constants was discussed. It was then shown that all equations so derived for free
undamped wave motion were applicable to the damped forced motion of hysteretically damped
multi-coupled systems. Loss factors were investigated and finite periodic systems of damped
multi-coupled elements were finally studied.
Sen Gupta [22] studied the rib skin periodic structure by wave propagation methods and

showed how natural frequencies of finite beam type periodic structures can be found from wave
propagation characteristics. Flexural propagation constants were determined for a continuous
infinite beam (periodically supported) with rigid supports and also flexible supports. Euler Beam
Theory and Receptance approach were used to find propagation constants. It was found that a
beam on rigid supports has a single wave propagation constant for each frequency and a single
well-defined free wave group. A beam on flexible supports has two propagation constants for each
frequency, and two corresponding free wave groups.
Miller and Flotow [23] investigated the dynamics of homogenous beam networks using Euler

beam theory. He and Rao [24], presented an analytical model for the study of coupled transverse
and longitudinal vibration of multi-span sandwich beam systems with arbitrary boundary
conditions. In this paper only modes and loss factors were investigated.
Mace [25] developed a new three-layered beam element with a central visco-elastic layer to be

used in FEM and compared the response and natural frequencies using standard packages. In the
paper [26], a three-layered beam theory was given in which the continuity of displacements and
transverse shear stresses was satisfied at the interfaces. Axial displacement field in each layer was
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assumed to be non-linear with respect to the thickness co-ordinate. This proposed sandwich beam
theory was used to predict loss factors of visco-elastically damped simply supported beams.
Bondaryk [27] conducted experimental measurements to understand the behaviour of trusses in
the frequency range 10–1400 Hz:
Fasana and Marchesiello [28] have also recently investigated modal frequencies of finite

sandwich beams with various boundary conditions. Polynomials were used as admissible
functions, leading to simple expressions for energy integrals. Xu and Huang [29] investigated
vibration reduction in a multi-span beam using a random wave reflector method. They introduced
different wave carrying media into the beam in a random sequence. The uncorrelated nature of
the reflections from different interfaces caused a general amplification in propagation constants.
Thus, it may be seen that the damping-related literature on periodic structures deals mostly

with loss factors and/or natural frequencies, which relate to a single span of the periodic structure.
The relationship between the loss factor and the attenuation at a certain frequency in a periodic
structure is not obvious. It has to be found. We have addressed this issue by determining the
actual propagation constant curve which includes the damping effect of the visco-elastic layer.
In this paper, the work presented is partitioned into two distinct sections. In the first section,

(Part I) a detailed analytical derivation of wave propagation in a three-layered periodically
supported infinite beam is presented. Of the three layers, the central layer is visco-elastic and
damps out vibrations as they propagate through the structure. An analytical model is developed
based on Timoshenko theory [32]. Then, propagation constants are computed and compared with
those of a homogenous periodically supported beam [2] (see Fig. 1). The similarities and
differences are investigated in detail using several intermediate equivalent theories.
In the second section (Part II), the three-layered infinite periodically supported beam mentioned

above is modelled in FEM and its vibration attenuation characteristics analyzed. In the analytical
study (Part I), the model is limited by Timoshenko theory restrictions [2] and not only that, the
central visco-elastic layer is placed throughout the periodic beam. This is convenient for using
analytical wave propagation methods. However, in practice, a soft damping layer placed
throughout has a weakening effect on the structure. It is better to place it at strategic locations in
the form of inserts, thereby damping the vibrations and at the same time maintaining the strength
of the structure. But again, such an insert configuration does not lend itself easily to wave
propagation methods. A numerical approach is needed. Part II uses finite element method (FEM)
to model the periodic beam with visco-elastic inserts.
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Fig. 1. (a) Sketch of infinite periodic beam. (b) Variation of propagation constant ‘a’ and phase coefficient ‘b’ for Euler

theory as a function of non-dimensional frequency kL in a periodic homogeneous beam.
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The FEM study is performed in ANSYS by initially obtaining comparable results with the
three-layered analytical model with the continuous visco-elastic layer. This is done not so much to
verify FEM against analytical study (ANSYS is a time-tested package) but to establish the place,
accuracies and advantages/limitations of one over the other. (It is already known that the
analytical model is governed by Timoshenko theory restrictions.) And to be comfortable that we
are using the B2D and S73 elements as they should be. By knowing the differences in the results
and by accounting for them approximately we establish confidence in the way the package is used.
This comparison does clarify certain issues as discussed later. Then, within FEM certain internal
consistencies are established in a non-rigorous manner.
After this is done, several studies are performed using the ANSYS package. An approximate

equation is derived which non-dimensionalizes the propagation constants so that given a starting
configuration, the propagation constant for any other given configuration can be obtained from
this equation, with less computations. Next, FEM is used in studying visco-elastic insert
configurations.

2. Part I: analytical method

2.1. Wave propagation in an infinite periodic three-layered beam

2.1.1. Three-layered beam theory
Consider a three-layered beam [32] with densities R1; R2; R3; Young’s moduli E1; E2; E3; and

shear moduli G1; G2; G3: The three thicknesses are d1; d2; d3; respectively, and the width of the
beam is b (see Fig. 2). Each of the layers in the beam is allowed to have independent shear strain in
accordance with Timoshenko Beam Theory [2,30] and independent rotation due to flexure.
However, the slope of the beam is the same at a given x location in the beam. Each layer has its
independent axial deformation in its horizontal plane but, transverse motion in the y direction is
common to all. As can be seen from Fig. 2, the in-plane displacement (longitudinal displacements)
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Fig. 2. Displacements and rotations in a three-layered beam.
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in the three layers are given by

x1 ¼ xL þ yb1; ð1Þ

x2 ¼ xL þ h1b1 þ ðy � h1Þb2; ð2Þ

x3 ¼ xL þ h1b1 þ d2b2 þ ðy � h1 � d2Þb3; ð3Þ

where xL is the longitudinal displacement of the neutral axis of the beam. The displacement in the
transverse y direction is Z which is assumed to be independent of y: b1; b2; b3 are the rotations due
to flexure in the three layers respectively. The reference plane y ¼ 0 is arbitrary. Its position has no
effect on the final results.
The longitudinal strains are given by

e1 ¼
dx1
dx

¼ x0L þ yb01; ð4Þ

e2 ¼
dx2
dx

¼ x0L þ h1b
0
1 þ ðy � h1Þb

0
2; ð5Þ

e3 ¼
dx3
dx

¼ x0L þ h1b
0
1 þ d2b

0
2 þ ðy � h1 � d2Þb

0
3; ð6Þ

where e1 is the longitudinal strain in the layer of thickness d1; e2 is the longitudinal strain in the
layer of thickness d2 and e3 is the longitudinal strain in the layer of thickness d3: The shear strain
are given by

gi ¼
dxi

dy
þ

dZ
dx

¼ bi þ Z0; i ¼ 1; 2; 3; ð7Þ

where gi is the shear strain in the layer of thickness di: The prime denotes a derivative with respect
to x: The total kinetic energy of the beam is given by [32]

Ekin ¼
b

2

Z l

�l

X
i

Z dui

dli

Rið’x
2
i þ ’Z2Þ dy

 !
dx; i ¼ 1; 2; 3 ð8Þ

and the total potential energy of the beam is given by

Epot ¼
b

2

Z l

�l

X
i

Z dui

dli

ðEie2i þ G1g2i Þ dy

� �
dx; i ¼ 1; 2; 3: ð9Þ

In the above equations, i denotes the particular layer and dli and dui; denote the appropriate lower
and upper co-ordinates of the ith layer. Next, we apply Hamilton’s principle, to obtain a set of
partial differential equations for xL; Z; b1; b2; b3 and natural boundary conditions. The partial
differential equations are given below:

j00
1 þ .j1 ¼ 0; j00

2 þ .j2 ¼ 0; j00
3 þ .j3 ¼ 0; j00

4 þ .j4 ¼ 0; j00
5 þ .j5 ¼ 0; ð10Þ

where the variables in Eq. (10) are given in Appendix A. In these equations double dash represent
second derivative with respect to space ðxÞ and double dot represent second derivative with respect
to time. If we next assume that all motions consist of plane waves of the type

A ¼ A0e
jðot�kxÞ;
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where A denotes displacement or rotation, then substituting the above relations into the five
partial differential equations (10) we get the following dispersion relation:

O11 O12 O13 O14 O15

O21 O22 O23 O24 O25

O31 O32 O33 O34 O35

O41 O42 O43 O44 O45

O51 O52 O53 O54 O55

2
6666664

3
7777775

xL

Z

b1
b2
b3

2
6666664

3
7777775
¼

0

q0

0

0

0

2
6666664

3
7777775
: ð11Þ

The elements of the coefficient matrix in Eq. (11) are given in Appendix B. The variable q0 is the
driving amplitude in units of pressure. The natural boundary conditions obtained from
Hamilton’s principle are (at x ¼ �L and L)

Z ¼ 0 or Fs ¼ 0; bi ¼ 0 or Mi ¼ 0 ði ¼ 1; 2; 3Þ; x1 ¼ 0 or Fl ¼ 0;

where the shear force and the moment expression details are given in Appendix C.
The three types of motion, longitudinal, shear and bending are coupled with each other. If the

layer configuration does not have a plane of symmetry there is no way of decoupling the motions
for all frequencies. The zeros of the determinant of the coefficient matrix in Eq. (11) give the free
wavenumbers. If E1; G1; E2; G2 and E3; G3 are assumed complex, then the imaginary part of the
wavenumber gives the decay constant or the loss factor. It turns out that there are five different
free wavenumbers for each frequency, but in the frequency range of interest only two of them are
real and so correspond to propagating waves. Of the two propagating wavenumbers, one is
related to flexure and the other to the longitudinal wave. If we neglect the longitudinal wave (i.e.,
drop xL), which has been found to be a valid assumption in the frequency ranges of interest, then
the first row and the first column in the coefficient matrix of Eq. (11) can be dropped. The
coefficient matrix is now of order 4. Next, we can find b1; b2; b3 in terms of Z; which are essential
for finding wave reflection and transmission coefficients. The relations among the remaining four
variables can be given as follows:

b1
Z
¼ �

c12

c13
;

b2
Z
¼

�ðO32O25 � O22O35Þ
c11

�
b1
Z

� �
O33O25 � O23O35Þ

c11

� �� �
;

b3
Z
¼

�1

O25

� �
O22 þ O23

b1
Z
þ O24

b2
Z

� �
; ð12Þ

where

c11 ¼ O25O34 � O35O24;

c12 ¼ O42 � O44
ðO32O25 � O22O35Þ

c11
�

O45

O25

� �
O22 � O24

ðO32O25 � O22O35Þ
c11

� �
;

c13 ¼ O43 � O44
ðO33O25 � O23O35Þ

c11
�

O45

O25

� �
O23 � O24

ðO33O25 � O23O35Þ
c11

� �
:

ARTICLE IN PRESS

V. Mangaraju, V.R. Sonti / Journal of Sound and Vibration 276 (2004) 541–570 547



Thus, in any three-layered section carrying a flexural wave, there will be four variables
ðZ;b1; b2; b3Þ each depending on four wavenumbers and hence four coefficients. Thus, there
appear to be 16 unknowns. However, at every wavenumber, the four variables are related by
Eq. (12). Hence, in any section the unknowns are finally four.

2.1.2. Wave propagation in a periodic three-layered beam with visco-elastic layer

In this section, the set of equations for obtaining the propagation constants for an infinite
periodically supported three-layered beam are presented. In the previous section we had found
that the three-layered model gives five wavenumbers. Of this, two are real (flexural and
longitudinal) and three are imaginary. The longitudinal wavenumber is neglected in this analytical
study. In a companion study, FEM modelling has proved the validity of this assumption.
The calculation is presented in two steps. In the first step, the transmission and reflection

coefficients for a single support in an infinite three-layered beam subjected to an incident flexural
wave are obtained. This derivation is related to Fig. 3a. These coefficients are used in the second
step to obtain the propagation constant, the relevant figure for which is Fig. 3b.
Fig. 3a shows an infinite three-layered beam with a single support at x ¼ 0 which divides the

beam into two sections, section 1 and section 2. Let a wave be incident on the support from
section 1 with magnitude given by

ðv0e�jk1xÞejot for ðxp0Þ:

The total wave in section 1 is the sum of the incident and reflected waves

v1 ¼ ðv0e�jk1x þ rejk1x þ A1e
jk2x þ A2e

jk3x þ A3e
jk4xÞejot for ðxp0Þ: ð13Þ

Similarly, the total wave in section 2 is

v2 ¼ ðte�jk1x þ A4e
�jk2x þ A5e

�jk3x þ A6e
�jk4xÞejot for ðxX0Þ: ð14Þ

In the above equations, r and t are the reflection and transmission coefficients of the support
respectively. The wavenumbers k1; k2; k3; k4 are general wavenumbers. However, for Timoshenko
theory only one wavenumber k1 is propagating which is used below. Since only relative
magnitudes of waves are needed v0 is assumed to be 1. We have eight unknowns (r; t and A1 to A6)
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for which the required eight equations are

v1 ¼ 0; v1 ¼ v2; b11 ¼ b21; b12 ¼ b22; b13 ¼ b23;

M11 ¼ M21; M12 ¼ M22; M13 ¼ M23: ð15Þ

In Eq. (15), the first letter in the subscript represents the section number and the second letter
represents the layer number. The details of the expression are given in Appendix C. Using the
above derivation we can find reflection and transmission coefficients at the support.
Next, with reference to Fig. 3b (which shows the n � 1; n and n þ 1th spans in a three-layered

periodic beam), the velocity v in each of the sections (denoted by n) is the sum total of infinite
reflections of waves propagating within the section n after initially being transmitted into it due to
flexure in the neighbouring sections. These summed velocities for a particular section n are
denoted by vþn and v�n : The ‘þ’ sign indicates a right travelling wave and ‘�’ denotes a left
travelling wave.
Let us consider the section n in Fig. 3b. The waves from the neighbouring sections contributing

to vþn which is a wave travelling to the right are (1) the transmitted component of vþn�1; (2) the right
travelling component due to v�nþ1 (initially transmitted into section n) then after one reflection at
the left support of the section ðnÞ: These two contributions will go through infinite reflections
within the section n: The reflections form an infinite geometric series and hence are summed up
accordingly. After considering all these waves the equation for vþn is given by

vþn ¼ nxðvþn�1te
�ik1L þ v�nþ1tre

�2ik1LÞ; ð16Þ

where

nx ¼
1

ð1� r2eð�2ik1LÞÞ
:

Similarly for the wave v�n there will be two contributions from the neighbouring sections. The
equation is similar to Eq. (16). And since the structure is periodic, we assume

vn�1þ

vnþ
¼

vn�

v�nþ1

¼ eg:

After substitution of the above relation into Eq. (16) for vþn and a similar equation for v�n ; we can
write

vnþðnxteð�ik1LÞeg � 1Þ þ vn� nxtreð�2ik1LÞ 1

eg

� �
¼ 0;

vn� nxteð�ik1LÞ 1

eg
� 1

� �
þ vnþðnxtreð�2ik1LÞegÞ ¼ 0: ð17Þ

Here k1 should be the propagating wavenumber. Written in a matrix form Eq. (17) becomes

a11 a12

a21 a22

" #
vnþ

vn�

" #
¼

0

0

" #
: ð18Þ

The zeros of the determinant of the coefficient matrix in the above equation give the propagation
constant g:
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2.1.3. Discussion

In this subsection, the propagation constant computed for the three-layered beam using the
formulation of the previous section is presented. Also, its dominant features are explained by
comparison with two elementary models. These two elementary models are based on the Euler
theory and the Timoshenko theory respectively. In these two models, the properties (Young’s
Modulus and area moment of inertia) are averaged over the cross-sectional area in order to arrive
at a homogenous equivalent damped model of the three-layered beam. The derivation of the
equivalent models being elementary, it is not presented here.
Fig. 4 shows the propagation constants for the Euler equivalent, the Timoshenko equivalent

and the three-layered analytical theory. The Euler equivalent beam behaves like the homogeneous
Euler beam (as shown in Fig. 1) and differs significantly from the three-layered beam. The three-
layered beam model is kinematically closer to Timoshenko theory. However, the Timoshenko
equivalent model approximates the three-layered theory more accurately in the attenuation zones.
Whereas, in the propagation zones the Timoshenko equivalent model is closer to Euler equivalent
theory (which is very close to Euler theory). Thus, Timoshenko equivalent theory gives us a
special insight into the propagation constant.
In equivalent theories, because of the averaging process across the cross-section, the damping is

negligible (since only the visco-elastic layer is modelled with damping). The three-layered beam
having no such averaging does have significant damping. Despite this difference, the peaks in the
attenuation zones for the Timoshenko equivalent and three-layered theories are close to each
other. So damping plays a negligible role in the attenuation zone peaks. This zone is characterized
by the transmission coefficient across a simple support (to be discussed later). In contrast, the
propagation zone behaviour is strongly dependent on damping. Thus, in the layered theory, the
propagation zone troughs exhibit significant attenuation unlike the Timoshenko theory in which
damping is negligible.
The role of damping at the troughs of the propagation constant curve needs to be

demonstrated, which is done in the next section using a damped homogenous infinite periodic
Euler beam.
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2.1.4. Simplified formula for the propagation constant

The formula for propagation constant for a periodic homogeneous beam in the case of Euler
theory can be given as [2]

coshðgÞ ¼
cosðkLÞ sinhðkLÞ � sinðkLÞ coshðkLÞ

sinhðkLÞ � sinðkLÞ
: ð19Þ

The coshðkLÞ and sinhðkLÞ values are almost same if the value of kL is more than p: And at higher
kL values the hyperbolic sine and cosine values are much larger than sine and cosine values. So
the above equation can be simplified (for large values of kL) as

coshðgÞ ¼ cosðkLÞ � sinðkLÞ: ð20Þ

In the above equation imaginary part of coshðgÞ is zero. If we consider damping in the form of
complex elastic modulus Eð1þ iZÞ (Z being half of the damping coefficient), then the wavenumber
becomes complex, of the form kð1� iZ=4Þ) (see Appendix D for details). Let us denote the
wavenumber as k1ð1� iZlÞ: So if damping is considered, the above Eq. (20) becomes

coshðgÞ ¼ coshðk1LZlÞðcosðk1LÞ � sinðk1LÞÞ

� i sinhðk1LZlÞðcosðk1LÞ þ sinðk1LÞÞ

¼Reðcosh gÞ þ i Imðcosh gÞ: ð21Þ

Eq. (21) simplifies to Eq. (20) upon substituting Z ¼ 0:

2.1.5. Discussion

Fig. 5a shows that whenever jcoshðgÞj value is above 1, stop bands occur and when the value is
between �1 and 1, pass bands occur. The simplified formulas for propagation constant (Eqs. (20)
and (21)) give accurate results when the value of kL is above 0:75p:
Fig. 5b shows the propagation constant ‘a’ for the undamped and damped cases. The damped

curve rises with kL; attenuating the propagation zones as well. In the same figure are plotted the
Reðcosh gÞ curves for the undamped and the damped case. While the undamped curve oscillates
with a uniform amplitude, the damped case oscillates with increasing amplitudes. The peaks of the
oscillations coincide with the peak locations of the attenuation zones of the damped propagation
constant curve. Thus, damping influences the peaks of the attenuation zones. It should be noted
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that the Reðcosh gÞ starts to differ from the undamped curve only when k1ZL exceeds the value 1.
Thus, we call this is a weak dependence on damping.
Also, plotted is the Imðcosh gÞ which has its peaks at the centers of the propagation zones. The

Imðcosh gÞ is zero for the no damping case (Eq. (20)). It has its maximum value at the centre of the
pass bands (i.e., at npþ p=4; n ¼ 1; 2; 3). The maximum value of the imaginary part in Eq. (21)
will occur at npþ p=4 ðn ¼ 1; 2; 3;yÞ; since ðcosðk1LÞ þ sinðk1LÞ value is maximum when k1L ¼
npþ p=4 ðn ¼ 0; 1; 2;yÞ: From Fig. 6, one can observe that the maximum value of
cosh�1ðImðcosh gÞÞ is touching the minimum values of the propagation constant in the pass
band. It can be seen that at the troughs of the damped ‘a’ curve, the cosh�1ðImðcosh gÞÞ is the sole
contributor. This imaginary part strongly depends on damping, since it is zero for no damping.
Here, the cosh�1ðReðcosh gÞÞ is zero. And similarly, where the real part is a contributor, i.e., at the
peaks, the imaginary value is zero. Thus, the amplification at the peaks is due to the real part and
at the troughs due to the imaginary part.
There is another factor which influences the peak attenuations in addition to damping. This is

the transmission loss of a flexural wave incident on a simple support in an infinite beam. This
factor is constant for Euler theory and depends on frequency for Timoshenko theory. This factor
dominates over damping at the peaks of the attenuation zones. This issue is discussed in the next
section.

2.1.6. Transmission and reflection coefficients for a simply supported infinite beam
In this section, the transmission and reflection coefficients are derived for a flexural wave

incident on a single support in an infinite beam. Timoshenko Beam Theory [1,30,31] is used and
later specialized for Euler theory at low frequencies. In Timoshenko theory, there occur two
wavenumbers k1 and k2: The k2 wavenumber decays faster and hence the incident wave depends
only on k1: Considering an incident wave in section 1 (see Fig. 7) and using support conditions for
the two reflected and two transmitted waves, one can obtain the transmission and reflection
coefficients for the propagating waves as

r ¼
ðk2

2 þ k2
s Þik1

ð�k2
1 þ k2

s Þk2 � ðk2
2 þ k2

s Þik1

and t ¼
ð�k2

1 þ k2
s Þk2

ð�k2
1 þ k2

s Þk2 � ðk2
2 þ k2

s Þik1

;
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where ks is the shear wavenumber [31]. As ks is proportional to the frequency, at lower frequencies
its value is very less and can be neglected. So the transmission coefficient becomes

t ¼
�k2

1k2

�k2
1k2 � ik2

2k1

: ð22Þ

And at lower frequencies, k1; k2 are equal, and Euler theory is approached. Hence, the above
equation can be written as

t ¼
ik

ik � k
¼

i

i� 1
¼ 0:5� 0:5i: ð23Þ

One can obtain the same result by directly using the Euler Beam Theory. Thus, at low frequencies
both theories give the same values for the coefficients. The coefficients are independent of
frequency and other physical properties of the beam. This is not true for Timoshenko theory as we
have seen above.
So far we have seen how imaginary part of coshðgÞ influences the troughs of the ‘a’ curve and

how the real part influences the peaks for high damping. For moderate and low damping it will be
seen that the peaks of the curve are more dependent on the transmission coefficient. In order to
prove this we need to know the relation between the transmission coefficient ‘t’ and coshðgÞ: The
transmission coefficient and coshðgÞ are related through [2]

coshðgÞ ¼ Re
1

t
ejkL

� �
; ð24Þ

where L is the span length in the periodic beam. The above equation is for the undamped case.
For the damped case, the equation is

coshðgÞ ¼
1

2

1

t
ejkLekZlL þ

1

t�
e�jkLe�kZlL

� �
: ð25Þ

Now, for Euler Beam Theory the transmission coefficient remains the same regardless of
whether there is damping or not. This can be easily seen in Eq. (23) by taking k to be complex
(which is the effect of damping). And since, 1=jtj forms the envelope of the coshðgÞ curve, the
peaks remain unaffected. Thus, the troughs are raised while the peaks remain constant for the
damped ‘a’ curve using Euler theory (as seen in Fig. 8a).
In case of Timoshenko Beam Theory, the expressions for t are not so clean and hence are

plotted in Fig. 8b as a function of kL: It can be seen that t shows negligible change upon
introduction of damping. However, it does change with frequency. Thus, envelope behavior of the
‘a’ curve follows that of 1=jtj as expected. In Fig. 8b, the 1=jtj þ c curve is superposed on the
propagation constant curve. The curve is almost tangential to the peaks of ‘a’.
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The entire above discussion holds good for the three-layered periodic beam model, which is the
primary goal of this study. It should be mentioned in this context that the loss factor for three-
layered sandwich beams have been computed by researchers [2,16,24,26] and it shows a typical
increase and then a decrease with respect to kL: Since the loss factor is a function of damping, the
troughs of the propagation constant curve of the three-layered periodic beam model does follow
this trend as shown in Fig. 9. The peak however, is still a function of the transmission coefficient
and does not show the loss factor trend.

3. Part II: finite element analysis

3.1. Introduction

As was mentioned in the introduction at the beginning of the paper, the second part deals with
FEM modelling of the three-layered periodic beam (Fig. 10). A numerical approach is needed in
order to model the damping layer as inserts (see Fig. 11). Here, initially the FEM model of the
continuous layered beam is developed and compared with the previous analytical results. The
differences are approximately accounted for before proceeding to the modelling of inserts (refer to
the main introduction section at the beginning of the paper).
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In the following subsection (Section 3.2), the specifics of the two ANSYS elements capable of
modelling beams are discussed and the actual configuration used in this study (number of layers, etc.)
is presented. Then, in Section 3.3 the method to compute the propagation constant is detailed. In
Section 3.4, the various cases in FEM are listed the results of which are compared with the analytical
method. In Section 3.5, the comparison between FEM and homogenous periodic beam theories and
the analytical three-layered periodic beam model is discussed. Also, the non-rigorous internal
consistency within FEM is validated. After the comparison, FEM studies are presented for various
layer configurations (thickness, location, etc.) in Section 3.6. Section 3.7, presents the propagation
constants for the beam with visco-elastic inserts. The conclusions are presented in Section 4.

3.2. Specifics of the B2D and S73 models

B2D is a 1-D Euler beam element which has two degrees of freedom (one vertical translation
and one rotation) at each node. In the model when a single homogenous span is modelled using
B2D, a single layer is considered. For three-layered Euler cases, each material layer is again
modelled using a single layer of B2D element. S73 element is a 3-D element with six degrees of
freedom at each node. With S73 also, each material layer (whether homogenous or three-layered)
is modelled using a single layer in the thickness direction.

3.3. Steps to find coefficient matrix using FEM model

Similar to the infinite homogeneous periodic beams [2] where the propagation constants were
derived analytically, here also a single span of a beam is considered with boundary conditions
vyð0Þ ¼ 0; vyðLÞ ¼ 0 at the ends. As shown in Fig. 12, a moment ðMzÞ is applied at support 1 at all
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the nodes in the vertical plane, and the minimum rotations computed at supports 1 and 2 in the
same horizontal plane. Using the total moment and the rotations, the moment impedances a11; a12
are obtained. Similarly, by applying a moment at support 2 one can find the moment impedances
a22; a21: The expression for cosh g is then given by [2]

cosh g ¼
ða11 þ a22Þ

2a12
;

where, in general, a11 and a22 are different except when the central layer is symmetric in which case
they are equal. The values of a12 and a21 are however always equal.

3.4. FEM model cases

In this section, we list out the specific cases studied in FEM using the two elements B2D and
S73, for validation against analytical models. The cases are as follows:

1. The homogeneous Euler beam is modelled using B2D element. The results for a periodic beam
are compared with the results from the analytical approach. (Section 3.5.1)

2. The homogeneous beam is modelled using S73 element and is done in two ways (Section 3.5.1):

a. All the three shear strains ðgxy; gyz; gxzÞ are suppressed.
b. Only transverse shear strain ðgxyÞ is allowed.
c. Both the above methods are compared with analytical results.

3. The three-layered beam is modelled and is done in three separate ways (Section 3.5.2):

a. The transverse shear ðgxyÞ is allowed in the visco-elastic layer but all the three shear strains
are suppressed in the parent material.

b. All the three shear strains ðgxy; gyz; gxzÞ are allowed in the visco-elastic layer. No shear strains
are allowed in the parent material.

c. All the three shear strains ðgxy; gyz; gxzÞ are allowed in the visco-elastic layer. And only
transverse shear ðgxyÞ is allowed in parent material.

d. The above three results are compared with the three-layered analytical model.
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It is important to note that the S73 element co-ordinate system should be taken for giving
orthotropic properties (see ANSYS Elements manual for details).
In this investigation, the following materials and properties have been assumed. Parent material

for the beam is steel and the visco-elastic material is hard rubber. The Young’s modulus, density
and the Poisson ratio of steel are E ¼ 20:71e10 N=m2; R ¼ 7850 kg=m3; n ¼ 0:25; whereas for the
hard rubber the values are E ¼ 20:71e8 ð1þ 0:5iÞ N=m2; R ¼ 3850 kg=m3; n ¼ 0:4 respectively.
For all layered beam cases the total thickness and breadth of the beam is 10 cm: The length of the
each span in a periodic beam is 1 m; if it is not mentioned in the corresponding sections. For all
the homogeneous beam cases the thickness and breadth of the beam is 5 cm: In most examples
presented in this paper, within the height of 10 cm; the visco-elastic material is placed 2 cm below
the top surface. And unless mentioned the visco-elastic layer is 2 cm thick. This leaves 6 cm parent
material below the visco-elastic layer. This is called the 2-2-6 configuration.

3.5. Discussion

3.5.1. Euler and Timoshenko beam theories vs. FEM (Homogenous periodic beam)
We begin the FEM ‘validation’ by comparing the FEM models with the simple and established

Euler and Timoshenko analytical theories for homogenous periodic beams. The FEM model is
done in ANSYS using the B2D element and the S73 element which can optionally incorporate the
transverse shear strain.
Fig. 13 shows the propagation constants for the periodic homogenous beam using the FEM

analysis, the Euler and Timoshenko analytical theories. It can be seen that the B2D element suits
the Euler beam theory quite well. The reason being that this element was derived based on Euler
beam theory.
In addition to the B2D element, the S73 element was also used by suppressing all shear strains.

This was done just to gain confidence in that particular element and see how it compared with
B2D element. The curves due to S73 are a little to the right of B2D suggesting higher natural
frequencies. The reason for this is that, Euler theory does not allow for normal stresses in the two
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transverse directions, whereas S73 element is a 3-D element with six degrees of freedom at each
node. Even though we set displacements free at the boundaries, the normal stresses within the
cross-section are not zero. This makes the beam stiffer and raises the natural frequencies. As
evidence of this, the cross-section was reduced, after which S73 results approached those of Euler
theory. If transverse shear is allowed for S73 element then the curve shifts a little towards the left.
In Appendix E the dispersion expression and the curve for Timoshenko theory are given.

Timoshenko theory being a refinement over Euler theory, three additional terms appear which are
not present in Euler theory. They are the last three terms in Eq. (E.1). And they denote,
respectively, the effects of rotary inertia, the transverse shear and a coupling term between the
two. Fig. 23 shows a plot of the wavenumber as a function of the frequency (the dispersion curve).
The effects of each of the terms mentioned earlier can be seen in the dispersion curve. Each term
raises the wavenumber curve over and above that of the Euler curve. Yet, the maximum effect is
that of the coupling term. Looking at the total Timoshenko dispersion curve, a given value of the
wavenumber k occurs at a frequency lower than that for Euler theory. Thus, the same wavelength
occurs at a lower frequency which implies that resonances are lower for Timoshenko theory and
the influences are in proportion to the effects of the three terms on the dispersion curve. It can be
seen that the Timoshenko theory differs from Euler and the two FEM models even at low
frequencies. The shift of the curve is due to rotary inertia and shear factor. The increase in
attenuation is due to the frequency dependency of transmission coefficient ðtÞ [2], which in turn
depends on both shear and rotary inertia.
The last case studied is S73 with transverse shear strain allowed. In this case the magnitude of

attenuation in the attenuation zones is more compared to the Timoshenko beam theory. Even
though Timoshenko theory is a higher order theory in comparison to Euler theory, it is not
consistent with 3-D elasticity and hence differences are expected in comparison with S73 element.
Yet, the exact reason for the shift between analytical Timoshenko theory curve and this model
curve is not clear. This model lines up closely with Euler theory which has no shear deformation.
The stiffness due to the two transverse normal shear stresses seems to be compensated by the
additional compliance given by the transverse shear deformation. When the curves are plotted on
a kL basis the peaks for all the cases line up.

3.5.2. Three-layered analytical method vs. FEM (continuous visco-elastic layer)
In this section, the three-layered analytical model proposed earlier is compared with FEM

analysis from ANSYS in which the S73 element is used. Since the Solid 73 element is capable of
modelling all the three shear strains, three separate cases are studied, one where all the three shear
strains ðgxy; gyz; gxzÞ are set to zero in the parent material and only transverse shear ðgxyÞ is allowed
in the visco-elastic layer (FEM1). And case two where again all the three shear strains ðgxy; gyz; gxzÞ
are set to zero in the parent material and all the shear strains are allowed in the visco-elastic
material (FEM2). And case three where the transverse shear strain gxy is allowed in the parent
material, and all shear strains are allowed in the visco-elastic material (FEM3).
Fig. 14 shows the amplitude of the propagation constants for the analytical method, FEM1,

FEM2 and FEM3 cases. The initial high value of the propagation constants in all FEM cases is
due to near field waves which are not accounted for in the analytical model. It can be seen that
each propagation zone contains a natural frequency of a single span of the infinite beam. The
curve has been plotted with the x-axis as frequency and the presence of the three terms mentioned
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earlier in the analytical layered model drops the natural frequencies, so that within the same
frequency range, the number of natural frequencies and the peaks are more compared to the
FEM1. Here too, the three-layered Euler beam aligns itself with FEM1, the reason for which was
given in the last part of the previous section. The S73 element for a homogenous beam with zero
shear strain and only ðgxyÞ lie on either side of the Euler analytical beam theory (see Fig. 13). Next,
for a three-layered beam, the S73 element again with zero shear strains (FEM0) leads the Euler
curve and FEM1 aligns itself with Euler theory (see Fig. 14). The reasons have been seen in the
previous section. From this the performance of FEM S73 element is considered satisfactory for
further parametric studies.
It is however not guaranteed that FEM1 or FEM2 will converge onto FEM3, i.e., if restrictions

on shear strains are removed in FEM1 or FEM2 in small increments do we arrive at FEM3? If a
new phenomenon appears somewhere along the way, the convergence will not occur. To see this,
we introduce small changes in the number and magnitude of shear strains within the parent and
the visco-elastic material till we reach the FEM3 model (no constraint on shear strains in visco-
elastic material), thus ensuring a continuous sequence of changes in the results. A drastic change
in the propagation constant value for a small change in the restraint of shear strains would imply
some form of singularity or a radically different phenomenon. The validity of FEM3 is established
through this mechanism of consistency.
Thus, we begin by introducing transverse shear strains only in the visco-elastic material. This is

shown as FEM1 in Fig. 14 and its amplitudes in the propagation zone are slightly higher than the
layered Euler case (this is due to damping as discussed above). After this, each shear strain
ðgxy; gyz; gxzÞ is taken from total restraint to no restraint in small steps for the visco-elastic layer.
The FEM2 is the result of releasing all shear strains from restraint. From the earlier argument this
establishes the validity of FEM2. An additional point in favour of FEM2 is that the number of
peaks within a given frequency match with that of three-layered analytical model. The attenuation
in FEM2 is definitely more due to energy dissipated in all the shear strains predominantly due to
in-plane shear strain ðgyxÞ:
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In order to model thicker beams, transverse shear strain should be allowed in the parent
material. Once FEM2 validity is justified, for the same model the transverse shear strain ðgxyÞ is
allowed in the parent material, which is the case FEM3. Looking at Fig. 14, the attenuation
increases for this model due to the presence of a dissipative mechanism in the parent material as
well. The attenuation peaks shift towards the left which implies an increase in the number of
natural frequencies for FEM3. The increase in the attenuation (in FEM3) is not much but
significant, when compared with FEM2.
In this approximate manner, we find FEM results reliable for further parametric studies. It

should be mentioned here, that most of the visco-elastic materials have low elastic moduli. So one-
dimensional theories will not give accurate results. It is better to model these materials with 3-D
elements and the parent material to be modelled with 1-D elements.

3.6. Wave attenuation in a periodic layered beam

3.6.1. Variation of the propagation constant with the position, length and thickness of the visco-
elastic layer
In the above two subsections, the ‘validity’ of the FEM2 and FEM3 models using S73 of

ANSYS has been established. It was shown that the FEM3 model gives more attenuation than
FEM2. But the variation in the results is not much compared to the FEM2. However, for
understanding and modelling, the FEM2 model is simpler than the FEM3 model. Hence from this
section onwards most of the case studies will be done using FEM2 and a few results using FEM3
will also be presented.
The first case study involves the influence of the y locations (see Figs. 2 and 15) of the visco-

elastic layer on the propagation constant. For this purpose a 2 cm thick visco-elastic layer is taken
with a total beam thickness of 10 cm; i.e., the parent material of the beam is 8 cm thick. The visco-
elastic layer is placed at various y locations within the beam and the propagation constants
computed. Fig. 15 shows the propagation constants for four locations of the visco-elastic layer,
2 cm from the top, 1 cm from the top, middle of the beam and top of the beam (top surface free)
using two FEM models (FEM2 and FEM3). The propagation constants are maximum when the
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layer is at the centre and least when it is at the top. This is because the shear strain is maximum
when the visco-elastic layer is at the centre and it behaves like a constrained layer. It can also be
seen that for a given maximum frequency of interest the number of peaks are more when the
elastic layer is at the middle. This in turn implies that there are more number of natural
frequencies and that the structure is weaker as result. This weakening effect can be seen as the
progressive left shifting of the peaks as the layer is placed more towards the centre.
The second study is with respect to the length of the span (Fig. 16a). The visco-elastic layer is

placed at the centre with respect to the thickness of the beam. The propagation constants for the
various lengths of the spans are plotted. With increase in length the natural frequency drops and
hence the peaks shift to the left. Also the attenuation at a given frequency is higher for a longer
length. This is due to the decay of the wave across the longer length.
The third study is with respect to the thickness of the visco-elastic layer. Fig. 16b illustrates how

attenuation increases with the thickness of the visco-elastic layer. The energy dissipated within the
visco-elastic layer is proportional to its thickness (one needs to integrate over the thickness to
obtain the strain energy). Hence, increasing the thickness increases the attenuation. In the figure,
the case with 3 cm thickness placed 2 cm below the top layer is almost the same as that with 2 cm
thickness placed 2 cm below the top layer. However, with a 3 cm layer thickness, the structure is
weaker as indicated by the left shift of the peaks implying an increase in the number of resonances.
When the 3 cm layer is 1 cm below the top layer, its performance is lower than the 2 cm layer
which is 2 cm below the top layer. This of course is due to the fact that a central layer gives more
attenuation. One could thus choose a best possible thickness and location with attenuation and
strength in view (Fig. 17).
The three factors influencing the propagation constant are the thickness, the location of the

visco-elastic layer and the length of the span. Amongst the three, the position is the dominant
factor affecting the propagation constant. We have found an equation which non-dimensionalizes
the propagation constants and aligns them approximately along a single curve. The propagation
constant calculation is intensive since zeros of a fourth order polynomial have to be found
numerically for every configuration. Using this equation (Eq. (26)) one can obtain the new
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Fig. 16. Variation of the propagation constant for (a) different span lengths with visco-elastic layer at the centre of the
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function of frequency kL (results using FEM2 model).
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propagation constant pcn for a new thickness, location and span length based on the propagation
constant for a central layer ðpcmidÞ and original length ðLÞ: kmid is the wavenumber in the central
position and kn is the new wavenumber. yn is the new neutral axis position from the central axis
and Ln is the new length. d is the central axis position from the bottom or top most fibre.

pcn ¼ pcmid
ðknLnÞ
ðkmidLÞ

d � yn

d

� �4

: ð26Þ

Figs. 18 and 19 show the non-dimensional propagation constants for FEM2 and FEM3
respectively. Fig. 18a is for various lengths while the visco-elastic layer is centred and Fig. 18b for
various y locations of the visco-elastic layer. These figures are obtained by using Eq. (26). As
mentioned earlier, with increase in length of the span, the natural frequency drops and
attenuation at a given frequency is higher for a longer length. This is due to the decay of the wave
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across the longer length. Fig. 19 shows the exact same cases but for FEM3. Thus, the same
Eq. (26) holds good.

3.7. Wave attenuation in a periodic beam with visco-elastic inserts

3.7.1. Studies with quarter and one-eighth span length inserts
In all layered beam cases presented so far, the visco-elastic layer is continuous throughout the

span of the beam. In the following cases, the visco-elastic layer is placed in the parent beam
material in the form of inserts (as shown in Fig. 17b) instead of a continuous layer. Different cases
are studied with different length, number and location of the inserts. In Fig. 20 a single insert of
length equal to a fourth of the span is placed at different locations along the span and its influence
on the propagation constant presented. It is seen that the location has very little influence on the
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first attenuation band. Since each attenuation band is related to a particular flexural mode of the
span [2,3], the location of the insert between the antinodal regions for that mode produces a high
attenuation in that band. For example, when the insert is placed at the center of the span, it lies
entirely between the two nodes of the third mode and hence the third attenuation zone is
amplified. Similarly, for the fourth mode since the antinodal region is exactly equal to the length
of the insert, any location which covers the antinodal region amplifies the fourth attenuation zone.
It is for this same reason that any location has almost the same influence on the first attenuation
zone.
From the figure we can observe that for the central position we get a sharp peak just before the

fourth attenuation band. The reasons for this are yet unclear. It is of course true that since the
propagation constant is derived from the ratio of the rotations at the two ends of the beam,
the denominator rotation is going to zero. This is indicative of a complex mode shape (as seen in
the finite beams cases [3]) which cannot happen in case of infinite beams. An important fact to be
noted is that, the longitudinal, torsional and in-plane flexural natural frequencies all occur at that
frequency. However, the beam is excited anti-symmetrically with respect to all these modes and
hence there is no way of exciting them. It could also be a numerical issue.
Fig. 20(b) shows the case for an insert one-eighth the span length. Here also, several locations

are chosen. The behaviour is similar to that of the one-fourth case. The attenuation levels in the
propagation zone are much lower than the three-layered continuous case. It is to be expected since
there is not much material to absorb the vibration.

3.7.2. Different lengths of visco-elastic material inserted at center of the beam span

Fig. 21 illustrates the variation of the propagation constant for various lengths of visco-elastic
inserts placed at center of the periodic span. As the length of visco-elastic layer decreases, the
attenuation decreases throughout the frequency range. The case with an insert equal to one-eighth
span almost behaves like a homogeneous beam. The one-half case seems to work well in
comparison with the continuous visco-elastic layer. The left shift of the peaks is lesser than the
continuous layer which implies a lesser number of natural frequencies within the same frequency
range and hence a stronger construction.
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3.7.3. Multiple visco-elastic inserts of total length equal to half the span
In this section, propagation constants are found for cases with multiple inserts, the sum of

whose length is equal to half the span. In these figures ‘þ’ indicates the presence of the visco-
elastic insert, and ‘�’ represents the main beam material at the same ‘y’ position.
In Fig. 22a four inserts are placed at the centre of the parent material each of length equal to

one-eighth the span. From the figure we can say that the third case is working well. If we compare
any of these three cases with the results of the previous sub-section, we can say that a single visco-
elastic insert of length equal to half the span located at the centre will work better than 4 pieces
inserted at different locations. However, from the strength point of view 4 inserts are better.
In Fig. 22b we look at 3, 4 and 5 inserts of lengths one-sixth, one-eighth and one-tenth the span,

respectively. From the Fig. 22b we can say that the four ð1=8ÞL inserts will work better than the
other two cases. An insert length of ð1=10ÞL is very small, so the shear is small. However, for the
three ð1=6ÞL beam length inserts the chance to shear is better than the ð1=8ÞL length inserts, but
the position of the inserts is not conducive for maximum attenuation. The arguments have been
presented in the previous subsection.

4. Conclusions

In this two-part investigation, a composite infinite periodically supported beam was studied for
understanding its vibration attenuation characteristics. Two distinct cases were presented. The
first case was a three-layered infinite periodic beam with a central continuous visco-elastic layer.
This system was modelled using Timoshenko theory kinematic assumptions and analyzed using
wave propagation methods. Equations were derived to compute the propagation constant for this
periodic beam. It was shown that the propagation constant curve rises with kL over the
undamped curve. Features of the propagation curve were explained in detail using several simple
beam theories. The attenuations at the troughs are strongly dependent on the degree of damping
while the attenuations at the peaks are more dependent on the transmission coefficient of the
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support for low and moderate damping. For high damping, however, the peak attenuations also
depend on damping.
The second case involved a periodic beam with visco-elastic inserts. This entire study was based

on finite element methods (FEM). Prior to modelling the inserts, the FEM results were validated
by comparing against the results from the previous continuous layer case. Several configurations
were tried based on the B2D and S73 elements. Through approximate arguments it was
established that the FEM results made physical sense and were as expected.
Then several parametric studies were performed in FEM for a three-layered beam with a

continuous visco-elastic layer. The location, thickness and the length of the span were varied and
their influence on the propagation constant analyzed. It was found that the maximum dissipation
is realized when the visco-elastic layer is centred with respect to the total thickness of the beam,
and also when the visco-elastic layer itself is thick and the span is long. An equation for non-
dimensionalizing the propagation constants was derived, so that by knowing the values for one
configuration those for another could be computed with ease.
Finally, studies were performed using FEM for cases where the central visco-elastic

layer is not continuous, but is in the form of inserts. It was found that long inserts are better
than short ones. However, long inserts weaken the structure. A single insert is better than several
whose total length is the same. An insert placed between the two nodes of a given mode
gives the best attenuation. Thus, an insert can be tailored to give the best attenuation for a certain
frequency band.
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Appendix B
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where

Ee ¼ bðE1d1 þ E2d2 þ E3d3Þ;

me ¼ bðR1d1 þ R2d2 þ R3d3Þ;

Ge ¼ bðG1d1 þ G2d2 þ G3d3Þ: ðB:2Þ

Appendix C

Fs ¼ Z0Ge þ bðG1d1b1 þ G2d2b2 þ G3d3b3Þ; ðC:1Þ
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the bending moment in the third layer (from bottom) is given by
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the bending moment in the second layer is given by
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the bending moment in the first layer is given by
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the longitudinal force is given by
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Appendix D. Slope of the loss factor in Euler beam theory

In Euler beam theory the wavenumber ðkÞ can be found from the following equation:

k ¼ o1=2 rA

EI

� �1=4

: ðD:1Þ

If the Young’s modulus is complex ðEð1þ iZÞÞ; where Z is half of the damping coefficient. Then
Eq. (D.1) becomes

k ¼ o1=2 rA
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where

C ¼
ð1=hÞ1=2ðr=EÞ1=4

ð1þ Z2Þ1=4
:

Imaginary part in Eq. (D.2) gives the loss factor. The slope of the loss factor between two
wavenumbers (k1; k2 at different frequencies o1; o2) is given by

Tan y ¼
Imðk1Þ � Imðk2Þ
Reðk1Þ �Reðk2Þ

; y ¼ Tan�1 Z
4

� �
: ðD:3Þ
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Here
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Appendix E

We can write a differential equation for Timoshenko beam theory as follows [1,31]:

B

Rs
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dx4
þ

d2w

dt2
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kf GS
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d4w

dx2 dt2
þ

IR
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d4w

dt4
¼ 0: ðE:1Þ

Eq. (E.1) is very useful to explain difference between Euler theory and Timoshenko theory.
Timoshenko theory being a refinement over Euler theory, three additional terms appear which are
not present in Euler theory. They are the last three terms in the equation. And they denote,
respectively, the effects of rotary inertia, the transverse shear and a coupling term between the
two.
Fig. 23 shows a plot of the wavenumber as a function of the frequency (the dispersion curve).

The effects of each of the terms mentioned earlier can be seen in the dispersion curve. Each term
raises the wavenumber curve over and above that of the Euler curve. Yet, the maximum effect is
that of the coupling term. Looking at the total Timoshenko dispersion curve, a given value of the
wavenumber k occurs at a frequency lower than that for Euler theory. Thus, the same wavelength
occurs at a lower frequency which implies that resonances are lower for Timoshenko theory and
the influences are in proportion to the effects of the three terms on the dispersion curve.
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